If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x+70=0
a = 1; b = -20; c = +70;
Δ = b2-4ac
Δ = -202-4·1·70
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{30}}{2*1}=\frac{20-2\sqrt{30}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{30}}{2*1}=\frac{20+2\sqrt{30}}{2} $
| n(-3/4)=12 | | -p/3=2 | | -1/8y=-12/18 | | (3x)2+5x-10=0 | | 36-40x=5x | | Y-5=7(x+9) | | x+3/8=(-5/12) | | x*0.0009765625=0,01 | | 3x+34=10x+10 | | X^3+3x^2+2x+6X=0 | | 19j-11j-1=7 | | 11=4(c-16)+3 | | x×x+5=850 | | 2=3z+-7 | | 6q=-6 | | -17r+7r+18r=-16 | | x(x+5)=850 | | (2x+9)(6+x)=0 | | 2=2(b-15) | | 10m-8m+3=13 | | 6x12-7=36 | | 11y+2y-7y+2=20 | | 19y-10=18 | | 5-r=-4 | | X(5+x)=750 | | 12+6q=13+5 | | x-6=x-10 | | x-2=1/2x+1 | | 130y+1275=4785 | | 3v-5=-11 | | -6/5x=-3/10 | | {x+3}{5}=12 |